
Algebraic Geometry: Lecture 3

Zariski Topology.

Given a set X, a topology on X is just a list T of subsets of X that satisfy the
following properties:

(1) ∅ ∈ T , X ∈ T

(2) If A1, A2, . . . ∈ T then
⋃

iAi ∈ T

(3) If A,B ∈ T then A ∩B ∈ T .

The subsets of X that belong to T are called the open sets of X.

If A ⊂ X is an open set then X \A is called a closed set. So we can just as easily
define a topology on a set X by listing all the closed sets, and then taking the open
sets to be all their complements.

As last week, assume k is an algebraically closed field. Recall that for a subset
S ⊂ k[X1, . . . , Xn],

V (S) = {P ∈ An | f(P ) = 0 for all f ∈ S},

and these sets are called the affine algebraic sets.

The Zariski topology is just a topology on An where the closed sets are precisely
the algebraic sets in An. It’s an easy exercise to see this is a topology using the
facts that:

(1) ∅ = V (k[X1, . . . , Xn]), An = V (0),

(2) V (S1) ∪ V (S2) = V (S1S2),

(3)
⋂

i V (Si) = V (
∑

i Si) .

The Zariski topology isn’t very subtle. Closed sets are mostly very small, for
example if k = C then a typical closed set is just a finite set of points, hence a
typical open set is all of C except a finite number of points.

The Zariski topology on Pn is defined exactly the same way, with projective
algebraic sets forming the closed sets. Other than the fact you’re now dealing with
homogeneous polynomials, everything is the same.

Using this topology we define a quasi-affine variety to be an open subset of an
affine variety, and a quasi-projective variety to be an open subset of a projective
variety.
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Functions on Varieties

Polynomial functions.

Let V ⊂ An be an algebraic set and I(V ) the corresponding ideal. (Recall, I(V )
is the ideal of polynomials that vanish at all points of V .)

We define a polynomial function on V to be a map f : V → k of the form
P 7→ F (P ) where F ∈ k[X1, . . . , Xn]. So f is the restriction of a polynomial
F : An → k. By definition of I(V ), two polynomials F,G ∈ k[X1, . . . , Xn] define
the same function on V if and only if F (P ) − G(P ) = 0 for all P ∈ V , i.e. if and
only if F −G ∈ I(V ). So we define the coordinate ring k[V ] by

k[V ] = {f : V → k | f is a polynomial function } ∼= k[X1, . . . , Xn]
/
I(V ).

Polynomials maps.

A generalisation of the above idea is as follows.
Let V ⊂ An and W ⊂ Am be algebraic sets. A map f : V → W is a polynomial

map if there exist m polynomials F1, . . . , Fm ∈ k[X1, . . . , Xn] such that

f(P ) = (F1(P ), . . . , Fm(P )) ∈W for all P ∈ V.

In particular a polynomial function is just a polynomial map with m = 1.

Examples
(1) Simple parameterisations like C → C2, t 7→ (t2, t3) (a cuspidal cubic), or

t 7→ (t2 − 1, t3 − 1) (nodal cubic) are polynomial maps.

(2) We can also take projections, for example π : C3 → C2, (x, y, z) 7→ (x, y).

A polynomial map f : V → W between algebraic sets is called an isomorphism
if there exists a polynomial map g : W → V such that f ◦ g = idW and g ◦ f = idV .

An affine variety is an irreducible algebraic subset V ⊂ An, defined up to iso-
morphism. If V is an affine variety then we saw last week that I(V ) is a prime
ideal, which means k[V ] = k[X1, . . . , Xn]/I(V ) is an integral domain. So we can
define...

The function field k(V ) of V is the field of fractions

k(V ) = Frac (k[V ]) =
{ g
h

∣∣∣ g, h ∈ k[V ], h 6= 0
}
.

An element f ∈ k(V ) is called a rational function on V . f is not really a
function on V because its denominator will probably have zeroes. But away from
these places it is a function, which motivates...

Let f ∈ k(V ) and P ∈ V . We say f is regular at P if there exist an expression
f = g/h with g, h ∈ k[V ] and h(P ) 6= 0. If f is regular at all points of V then we
simply say it is regular.
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Example
Let V = {XT−Y Z = 0} ⊂ A4. Consider the rational function f = X/Y ∈ k(V ).

Then f is regular at the point (X,Y, Z, T ) = (0, 0, 1, 1). This is because even though
we get X/Y = 0/0, we can also write f = Z/T , and at this point T 6= 0.

We write
dom f = {P ∈ V | f is regular at P}

for the domain of definition of f .
We also define

OV,P = {f ∈ k(V ) | f is regular at P}
= k[V ]

[
h−1 | h(P ) 6= 0

]
.

OV,P ⊂ k(V ) is a subring called the local ring of V at P .

Rational maps.

Given an affine variety V , a rational map f : V 99K An is a partially defined
map given by rational functions f1, . . . , fn ∈ k(V ), i.e.

f(P ) = (f1(P ), . . . , fn(P )) for all P ∈
n⋂

i=1

dom fi.

By definition dom f =
⋂

dom fi and f is called regular at P ∈ V if and only if
P ∈ dom f .

A rational map V 99K W between two affine varieties V ⊂ An and W ⊂ Am is
defined to be a rational map f : V 99K Am such that f (dom f) ⊂W , i.e. its image,
where defined, is contained in W .

Example
There is a rational map from R to the circle given by

f : λ 7→
(

2λ
λ2 + 1

,
λ2 − 1
λ2 + 1

)
.

f is regular for all λ ∈ R.

Composition of rational maps may not always be defined. The problem is that
the composite g ◦f is defined on dom f ∩f−1(dom g), and this can easily be empty.

Example
Let f : A1 → A2 : X 7→ (X, 0) and g : A2 99K A1 : (X,Y ) 7→ X

Y . So dom f = A1,
dom g = {A2 | Y 6= 0}, and f−1(dom g) = ∅.

We can sort out which maps allow compositions with the following definition.
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A rational map f : V 99K W is dominant if f(dom f) is dense in W for the Zariski
topology. That is, if we pick any point Q ∈ W and any open set S containing Q,
then S will also contain an element of f(dom f).

Using the fact that rational maps are continuous we get that f−1(dom g) ⊂ dom f
is a dense open set for any rational map g : W 99K U , so g ◦ f is defined on a dense
open set of V , so g ◦ f : V 99K U is at least partially defined.

Morphisms.

Given an open set U ⊂ V , a morphism f : U →W is a rational map f : V 99K W
such that U ⊂ dom f , so that f is regular at every P ∈ U .

If U1 ⊂ V and U2 ⊂ W are both open then a morphism f : U1 → U2 is just a
morphism f : U1 →W such that f(U1) ⊂ U2.

An isomorphism is a morphism that has an inverse morphism, i.e. a morphism f
for which there exists a morphism g with f ◦ g and g ◦ f both being identity maps.

Projective things.

Most things in the projective case are entirely analogous to the affine case.
If V ⊂ Pn is an irreducible projective algebraic set then a rational function on

V is a partially defined function f : V 99K k given by f(P ) = g(P )/h(P ) where
g, h ∈ k[X0, . . . , Xn] are homogeneous polynomials of the same degree.

Clearly g/h and g′/h′ define the same rational function on V if and only if
h′g − g′h ∈ I(V ), so

k(V ) =
{ g
h

∣∣∣ g, h ∈ k[X0, . . . , Xn] are homogeneous polynomials of the same degree, h 6∈ I(V )
}/
∼

where ∼ is the equivalence relation

g

h
∼ g′

h′
⇐⇒ h′g − g′h ∈ I(V ).

k(V ) is called the function field of V .

The definitions of a rational function being regular at P , dom f , and OV,P are
identical to the affine case.

If V ⊂ Pn then a rational map V 99K Pm is defined by

P 7→ [f0(P ), f1(P ), . . . , fm(P )]

where f0, . . . , fm ∈ k(V ). This gives the same map as

P 7→ [g(P )f0(P ), g(P )f1(P ), . . . , g(P )fm(P )]

for any nonzero g ∈ k(V ). In particular if f0 is never zero then we may assume
that f0 ≡ 1.
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A rational map f : V 99K Pm is regular at P ∈ V if there exists an expression
f = (f0, . . . , fm) such that

(1) f0, . . . , fm are all regular at P ,

(2) at least one fi(P ) 6= 0.

Again, if U ⊂ V is an open subset of a projective variety V then a morphism
f : U →W is a rational map f : V →W with U ⊂ dom f .

Birational maps.

Let V and W be (affine or projective) varieties. A rational map f : V 99K W is
called birational if it has a rational inverse, i.e. if there is a rational map g : W 99K V
such that f ◦ g = idW and g ◦ f = idV .


